COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445 Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

Research on rejuvenation analytical models for a virtualized
system with live VM migration

Yi Zhong®, Jian Xu, Jing Zhong, Fengyu Liu
1 School of Computer Science and Engineering Nanjing University of Science and Technology, Nanjing, Jiangsu, China, 210094

Received 6 October 2013,www,cmnt.lv

Abstract

With the widespread use of virtualization technology, availability of Virtual Machines (VMs) in server virtualized systems became
an important issue. In aspect of availability of virtualized systems, software rejuvenation is a favourable technology, which can
postpone or prevent failures caused by software aging in VMs and underlying Virtual Machine Monitor (VMM). During the
rejuvenation of the VMM, live VM migration can further improve availability of virtualized systems. In this paper, we will analysis
rejuvenation process of virtualized system with live VM migration, propose a time and load based rejuvenation analytical model in
Stochastic Reward Net (SRN) to describe state change during system rejuvenation, find the optimum combinations of rejuvenation
trigger intervals that maximize the availability of VM, and do a experience to analyze and compare the model in this paper and the
time based model. The experience result shows the time and load based rejuvenation analytical model is better than the time based
model in respect of system availability and throughput rate, and is more stable in face of the dynamic change of system load.

Keywords: Virtual Machine (VM); Virtual Machine Monitor (VMM); Software Aging; Software Rejuvenation; VM Migration; Stochastic Reward
Net (SRN)

1 Introduction migrate are widely adopted which means live migrate a
running VM to another physical machine without client
application awareness. In this paper, we will model and
describe software rejuvenation process for server
virtualized systems with live VM migration by a
stochastic reward net (SRN) rejuvenation model, and
analyze the relationship between different composite live
VM migration actions and system performance matrix.

The rest of this paper is organized as following:
Section 2 lists existing different rejuvenation policies and
their corresponding implementation models. Section 3
introduces a time and load based analytical model for a
virtualized system with migration-VM rejuvenation
model in SRN. To validate the technique, the analysis
results on system steady-state availability, sensitivity and
system throughput rate are presented in Section 4. Finally
section 5 concludes this paper and shows the further
work.

As a common software and hardware resources sharing
framework, cloud computing gets very fast growing due
to it can provide high available and high performance
computing and storage service to both Internet and
intranet users recently. Server virtualization is the
fundamental part of cloud computing to support dynamic
volume users’ request via virtual machines (VMs)
whenever necessary. To assure the high quality service to
win users’ satisfaction on their business, how to keep
high-availability of VMs running on server virtualized
systems becomes a common concern to many
organizations, service providers and users.

After long online execution, because of age-related
bugs, which are difficult to find and remove during
developing and testing, software system may meet
memory leaking, unreleased file lock and data corruption,
until the whole system failure or crashes [1]. Software
rejuvenation is one of common used techniques to assure
high-availability of server virtualized systems by
rebooting or resetting software environment to clean
internal error state for continuing service [2, 3]. In a
virtualized system, multi-VMs are hosted on hypervisor
or virtual machine monitor (VMM) for resource
management and monitoring. When VMM fails or
suspends for aging issue, all the hosted VMs will have to
halt, so software rejuvenation is both applicable to VMM
and VMs. To minimize the down time cost, live VM

2 Related work

VMM rejuvenation for server virtualized system was
firstly introduced in [4]. If VMM rejuvenation is directly
performed on a host, the execution environments of all
the hosted VMs are cleared because they are running on a
VMM. So based on the different approaches on hosted
VMs, VMM rejuvenation techniques can be divided into
three categories [3, 9]: Code-VM rejuvenation, Warm-
VM rejuvenation and Migrate-VM rejuvenation.

“Corresponding author’s E-mail: zhongyi@njust.edu.cn

439

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445

Code-VM Rejuvenation: Before triggering VMM
rejuvenation, the simplest way to handle the hosted
VMs is to just shut down all of them regardless of
their execution states. Those VMs will be restarted
in clean environment after the VMM rejuvenation.
While it forces shutdowns of the hosted VMs which
may bring potential risks. In case some VMs are still
in running state, all the transactions running on them
are lost by the Cold-VM rejuvenation. An advantage
of the Cold-VM rejuvenation, however, is that the
rejuvenation action clears all the aging states of the
VMs in addition to the aging states of the VMM.
Warm-VM Rejuvenation: All the hosted VMs are
suspended and the corresponding execution states
are archived before VMM rejuvenation is triggered.
Then after the VMM rejuvenation, all VMs are
resumed back to origin states. Warm-VM reboot
enables a VMM to suspend hosted VM execution in
memory and resume the execution after VMM
rejuvenation [4]. Due to the execution states of VMs
are kept in memory instead of persistent storage, it
can fast the recovery VM quickly without
transactions loss risk and the overall down time are
greatly reduced.
Migrate-VM Rejuvenation: It’s a combination
rejuvenation, which combines VMM rejuvenation
and live VM migration in a fitful way. Live VM
migration keeps services on a VM continue working
and migrates the VM among different physical
machines. Using live VM migration, a hosted VM
are moved to another before VMM rejuvenation.
Once VMM completes rejuvenation, the VM could
choose to return back to the original host or
continue stay on current one. In such rejuvenation
method, the VM can still continue the execution
even the original VMM is being rejuvenated.
However, the aging states in the hosted VMs are not
cleared by the VMM rejuvenation. Meanwhile it
only works when the migration target server has a
capacity to accept the migrated VM.
In order to completely analyze the availability of a
server virtualized system, D. Kim et al. leveraged a
hierarchical stochastic model to present the system
architecture and the details of failure/recovery [5].
T.Thein, et al. built a continuous time-Markov chain
(CTMC) for time-based periodical rejuvenation for VMs
on a virtualized system which included two physical
servers and clustered VMs, but VMM rejuvenation is not
covered [6]. A.Rezaei, et al. added VMM failure and
VMM rejuvenation in the availability model for a
virtualized system [7]. Melo et al. introduced the
Stochastic Petri Net (SPN) model for time-based

440

Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

rejuvenation in cloud computing, so as to evaluate the
impacts to system availability on different VM migration
policies [8]. Mechida.F, et al. proposed time-based
analytical models in SRN for virtualized system with
cold-VM rejuvenation and warm-VM rejuvenation
respectively, and gave the comparisons of these models
[3]. In [9], Mechida. F, et al. further considered the
effects of the failures of the target host and VM migration
process, proposed and analyzed a time-based model for
virtualized systems with migrate-VM rejuvenation with
emphasis, compared availability of the VM on the type of
live VM migration (stop-and-copy or pre-copy) and the
policy for migration back to the original host after VMM
rejuvenation (return-back or stay-on).

A time and load based analytical model was firstly
proposed by Garg S, et al.[10]. They assumed system
may have different system loading in different software
rejuvenation time window, so the down time cost and
transactions loss numbers varied a lot during
rejuvenation. Y.Bao, et al. consolidated time-based and
measure-based approaches into rejuvenation framework
with additional consideration for load and resource leak
indexes [11,12]. K.Vaidyanathan, et al. simplified his
model to be a semi-Markov load model and tried to find
out the best rejuvenation schedule with maximum
availability and minimum down time cost [13]. In our
previous work, we constructed a rejuvenation analytical
model for a single-server virtualized system with a
combinatory rejuvenation technique that uses a time-
based policy for a VMM and a measurement-based policy
for VMs [14].

3 Time and load based analytical model for a
virtualized system with Migrate-VM rejuvenation

As one extended branch of SPN, SRN makes system’s
steady-state availability can be measured by defining the
corresponding reward functions, and has quite a few
enhancements such as guard functions, transition
priorities, variable cardinality arcs, and so on, so SRN has
been wide adopted in rejuvenation modeling. We
leverages SRN models multiple services’ environment
with live VM migration, so as to assure the system still
keep service online by means of transiting the
corresponding live VMs to another available host during
VMM rejuvenation.

In this paper, for some graphical representation, we
have conventions as follows: a narrow bar for an
immediate transition, an empty rectangle for a time
transition, a filled rectangle for a deterministic transition
and # for token numbers.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445

Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

Threpai

Theprejt

Thfail

(a) VMM1 model

Phcl 0(‘,

Thinterval

Threset

[ghintervalll

[gh2trig]

Th2fprejt

Th2repair

Ppeak Toffpeak

Ph2det

Ph2fail

Tpeak Poffpeak

Th2fail

(b) VMM2 model

[ghinterval]

(c) Peak hour model

Pvclock

Tvreset Tvinterval

[gvinterval]

Phtrigger [T:}l:;,)(]]i lf‘(l_/y] Phpolicy Ph2trigger E:}f;;oll]fgy] Ph2policy Pvtrigger [l;\pr?éllfgyy] Pvpolicy
(d) VMM1clock model () VMM2 clock model (f) VM clock model

Tvrepair2

[gvh2up]

Pvdet2

Tvdet2

Pvstop2

T pdw2
[gvh2dw]

Lgvh2up Tvfprejt2

Pvfail2 Tvfail2 Pvfp2

[gvrej][Tvrej
—

Pyre

Pvstop

Tvipdw
[gvhdw]

Pvfp Tvfail pyfail

(9) VM model
FIGURE 1 Time and load based analytical model for a virtualized system with Migrate-VM rejuvenation

TABLE 1 Guard functions

Guard Definition
OQutrig if(#Pvlngger::l&&# Poﬁpeak::l) lelse 0
Gelay If(#Purigger ==18&&H Ppeai==1) 1 else 0
Orej if(#Pvclock::1&&(#Phup::1”#thp==1)) lelse 0
Ovreset if(#Pwejzzl||#Pwejz==1) lelse 0
Ovhrej if(#Phpolicyzzl&&(#Ph2up==1||#Ph2fp::l)) lelse 0
Ovhup if(#Phupzzlu#thp::l) lelse 0
Ovhdw if(#than::l) lelse0
Ohinterval if(#Phup::].”#thpzzl) lelse 0
Ohpolicy if(#PVUP::O&&#Pvfpz:0&&#Pvm|g:=0&&#Pwpmig::0&&
#vaac==0&&#P\,fpbac==0) lelse 0
Ohreset if(#Phrejzzl) lelse 0
Ohtrig if(#Pmngger =1) lelse0
Ohrej if(#Phclock:: 1) lelse0

The SRN model comprises seven sub-models as
shown in Figure 1: (a) VMM1 model, (b) VMM2 model,
(c) Peak hour model, (d) VMM1 clock model, (€) VMM2
clock model, (f) VM clock model and (g) VM model.
Initially, VM is hosted on the VMM on host 1 which
called VMML. Before VMML1 is rejuvenated, VM will be
live migrated to the VMM on host 2, i.e., VMM2. Both of
the two VMMs are rejuvenated either periodically by
each individual clock models (VMM1 and VMM2 clock
models) or when system load achieved the threshold

Guard Definition

Ovinterval if(#Pvup::].”#Pvfp::1”#Pvup2::1”#Pvfpz::1) lelse 0

Quoiey IT(#Pwup==1][#Pygy==1|#Pyupo==1[[#Puo==1) 1 else 0

Ovrej2 if(#Pvdock::l&&(#thup::ll|#Ph2fp==l)) lelse 0

Ovbac Return-back: if(#Pnhuy==1|[#Pnp==1) 1 else 0
Stay-on: if(#thpoucy::l&&(#Phup:Zl”#thp ::1))1 else 0

Qvh2up if(#PhZupzzln#thfp::l) lelse 0

Ovh2dw if(#thfa”::l) lelse0

Onzinterval IF(#Phoup==1|#Pn2r,==1) 1 else 0

Oh2policy if(#Pvup2::0&&#Pvfpzz:O&&#Pvmig::O&&#Pwpmigzzo&&#Pv
bac::O&&#Pvfpbac::O) lelse 0

Oh2reset if(#Pthejzzl) lelse 0

Ohatrig if(#Pthrigger::I) lelse 0

ghzrej if(#PhZClockzzl) 1 EISe O

441

value (Peak model). In Figure 1 (g), the right side
describes behavior of the VM on VMM1, the left side
captures the behavior of the VM on VMM2 and the
middle is for live VM migration. The corresponding
guard functions are listed in table 1.

The process of live VM migration can be illustrated
as follows: In the beginning, the VM hosts on VMML1.
When the clock for VMML1 requests rejuvenation for
VMM, gvhrej will enable Tvpre or vappre for live VM
migration as long as VMM2 is available (which means a

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445

token is deposited in Py OF Puip2). It represents the live
VM migration begins. When the live VM migration is
finished, a token is deposited in Pymig or Pyfpmig. While
the live VM migration may have certain probability of
failure for some reasons (such as network is temporary
down, or target host does not have enough capability to
host the VM, or wrong configuration for
virtualization...). If the VM migration fails, transition
Tumigt OF Turpmigr Will be enabled, and then a token arrives at
Pumigt. Then, a token is deposited in Py, by firing the
transition Tymigrec iIf VMML is available. Otherwise if a
token is deposited in Pup2 Or Py by firing the transition
Tumig OF Tupmig, the VM has been successfully migrated to
VMM2 and continue servicing. When a token is
deposited in Pypz2 (VM is migrated from its up-state) or
Pvip2(VM is migrated from its fail-probable-state) or Pymigt
(VM migration failed), VMM1 rejuvenation starts.
According to gnpolicy definition in table 1, if a token is
deposited in Puwp: Pvip , Pumig, Pvtpmig, Pvbac OF Pufgbac,
VMML1 is still in use, and can not be rejuvenated.

In peak hour model, a token is deposited in Ppeak Or
Pofipeak represents the VMM runs at peak load (system
load over a threshold value) or off-peak load (system load
under a threshold value). The aging speed of a VM at
peak load is faster than it at off-peak load. Tpea and
Toffpeak are deterministic because they represent periodical
inter-transitions between peak load and off-peak load. By
the transition Tpeak, the token in Ppeax is removed and a
token is deposited in Popeak, While by the transition
Toffpeak, the token in Pofmpeak iS removed and a token is
deposited in Pgeak. When a token is deposited in Putrigger
(in VM clock model) and a token is deposited in Pofpeak
(in Peak hour model), one of immediate transitions Tyrejt,
Tutprejt, Turejz @Nd Turprejrz Will be fired. While if a token is
deposited in Ppeak, 0one of immediate transitions Tugelay
Ttdelay, Tudelay2 and Ttdelay2 will be enabled, which means
VMM1 or VMM2 rejuvenation will start after a time.

After live VM migration and VMM rejuvenation are
successfully performed, VM may choose to stay on
current host (Stay-on policy) or return back to origin host
(Return-back policy). The only difference is whether VM
will be back to origin host. If the current host is only for
temporary usage or the VM is forced to go back to origin
host, then it has to follow return-back policy. Otherwise
either of the two policies can be used. In VM model, the
guard function Qupac for transitions Tubacpre and Tutpbacpre
represents both policies of VM migration. For return-
back policy, Tubacpre Or Tufpbacpre IS enabled after the
original VMM is available (VMM in up-state or fail-
probable-state). While for stay-on policy, Tubacpre OF
Tvipbacpre 1S enabled until the VMM2 rejuvenation is
required. Then a token is deposited in Pyac OF Pyipbac by
either policy. If live VM migration from VMM2 to
VMML fails, the VM will be restarted on VMM2. Table
1 gives the details of all guard function for migrate-VM
rejuvenation, including Quwac implementation both for
‘return-back’ and ‘stay-on’ policies.

Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu
The clock for VM rejuvenation works independent
of where the VM is hosting. When a token is deposited in
Purigger in the VM clock model, one of the immediate
transitions Turejt, Tfprejt » Tvrejtzs OF Tutprejte IS €nabled in VM
model. This ensures that the VM rejuvenation is
performed on the other hosting server if required when
the VM is on VMM2,

4 Experiments

TABLE 2 Default values of transitions in the model

Transition Description Default Value
Tuip aging rate under peak hour 1/3 day*
aging rate under offpeak hour 17 day?
Tofail VM failure rate after aging under 1/24 h?
peak hour
VM failure rate after aging under 1/3 day*
offpeak hour
Toet VM failure detection rate 12 ht
Trepair VM failure recovery rate 2 ht
T VM rejuvenation trigger rate 1 day?
Turestart VM restart rate 120 h*
Tusd VM shutdown rate 120 h?
Tupre VM migration pre-copy rate 90 ht
Tumig VM migration rate by pre-copy 3600 ht
Tudelay VM peakhour delay period at up 0.5 h?
state
Trdelay VM peakhour delay period at 0.5 h*
failure-possible state
Thip VMM aging rate 1/30 day*
Thail VMM failure rate after aging 17 day*
Theet VMM failure detection rate 12 ht
Ve VMM reactive recovery rate 1 ht
Threj VMM rejuvenation rate 30 ht
Thinterval VMM rejuvenation trigger rate 17 day*
Thinterval VM rejuvenation trigger rate 1 day?
Wizt peak hour rate 1/12 ht
Toffpeak off peak hour rate 1/12 h?

For the SRN model in this paper, we choose SPNP to
implement its Markov regenerative process [15]. Except
deterministic transitions Thinterval, Thointerval, Tvinterval, Tpeak
and Tompeak, all other transitions are assumed to be
exponentially distributed. All default values of transition
rate are listed in Table 2, while other default parameters

are listed Table 3.
TABLE 3 Default parameter values in the model

Cv VM migration coverage 0.9
R; request incoming rate in peak hours 1000 s*
R, request incoming rate in offpeak hours 10 st

X request processing rate per VM 275 st

Given parameters listed in Table 2 and Table 3, this
section will give detail analysis and comparison on
system availability, sensitivity and throughput rate
between time-based VM rejuvenation model™ and our
enhanced time and load balance based model.

4.1 OPTIMUM REJUVENATION TRIGGER
INTERVALS AND SYSTEM STEADY-STATE
AVAILABILITY

System steady-state availability varies for different
combination of rejuvenation trigger intervals of the VM
and the VMM. Frequent rejuvenation increases the

442

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445

downtime for too much cost of rejuvenation actions,
while low frequent rejuvenation may also increase the
system downtime for frequent software failures. Only at a
certain trigger interval, the steady-state availability of the
VM can be maximized. We use a gradient search
algorithm to find the exact point for optimal system
performance, so as to get the optimum combination of
rejuvenation trigger intervals of VM and VMM [9].

Table 4 presents the definition of reward functions for
steady-state availability. Using those functions along with
parameters in Table 2, we can compare the two models’

TABLE 4 Reward functions for steady-state availability analysis

Time based model
Time and load based model

TABLE 5 System steady-state availability with default parameter values

Model Time based model
Stay-on
Steady-state availability 0.996361

TABLE 6 Optimum combinations of rejuvenation trigger intervals

Model VM rejuvenation trigger
interval (hour)
Time based model Stay-on 20.45
Return-back ~ 20.95
Time and load Stay-on 110.2
based model Return-back = 20.85

TABLE 7 VM request processing speed under different system loads
Peak Hours per day(h) Time based model

Return-back
0.996533

VMM rejuvenation trigger interval

Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu
system steady-state availability. Then Table 5
summarizes the two models’ availability under default
parameter sets. Table 6 shows the optimum rejuvenation
trigger interval by the gradient search algorithm.

Consolidate data in Table 5 and Table 6, when VM
and VMM take the fitful rejuvenation interval, the two
models both can achieve their maximum availability. The
comparison of steady-state availability between stay-on
policy and return-back policy depends on parameter
setting. Under default values in this section, our model
gets higher availability.

If((#Pvup==D)[| #Pvip==L)|(#Pvupo==1) | (#Prps==1))) 1 else O
If((#Pup==D|(#Pviy==D)l|(#Pupo==1)||(#Purc==1))) 1 else 0

Time and load based model
Stay-on Return-back
0.997033 0.996535

Steady-state availability

(hour)

30.72 0.996808
50.36 0.996771
20.32 0.9977
50.78 0.996782

Time and load based model

stay on return back stay on return back
4 190497 190530.2 190572.8 190533
8 348908.8 348969.7 349094.6 348969.3
12 507178.3 507265.8 507518.8 507266.8
16 665300.8 665415 665843.2 665419.7
20 823269.5 823411.7 824064.3 823425
24 981073.2 981240.8 982171.6 981272.3

4.2 MIGRATION SUCCESSFUL RATE

09915

0991
%01

03

05 08 08
Live VM migration coverage

migration successful rate to steady-state
availability

Live VM migration failure may cause the down time of
systems increase. Figure 2 presents the impact of
migration successful rate to steady-state availability. As
the increasing of migration successful rate, the steady-
state availability will also be improved accordingly. Due
to return-back policy requires VM should be migrated to
origin host after VMM rejuvenation, it has much stricter
requirement. While with high migration successful rate,

FIGURE 2 Impacts of VM

443

the stead-state availability of return-back policy has
advantage than the stay-on policy. Based on the data in
Figure 2, comparing to time-based model, our time and
load based model achieves better in overall steady-state
availability, sensitivity of successful rate on return-back

policy.
4.3 PEAK DURATION PER DAY

Figure 3 presents the impacts of different peak duration
per day to system steady-state availability. It’s obvious
that as the peak duration extends, all the models will has
performance drop issue accordingly. The reason is longer
peak duration will fast the VM aging and increase the
probability of VM failure, as a result the system
availability will decrease. Among all the models, time
based model with stay-on policy is most sensitive to
system load, the system availability will drop sharply
when system load increasing. Since our new model
already takes system load as one of the major factor, it
can reduce the load impact to system availability as
much as possible. As showed in Figure 3, our model
does not drop so obviously comparing to original time
based model. Which means the new model can still keep

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445

high performance and availability under high system
load, even for stay-on policy.

Time based model stay-on

—— Time based model return-back
Time and load based mode! stay-on
Time and load based model returm-back

0.9975}

964!
0. 50

5 15 20

10
Peak hours per day

FIGURE 3 Impacts of system load to steady-state availability
4.4 THROUGHPUT RATE

Beside availability measurement factor, the experiment
also adds system throughput rate as another performance
factor according to system load attribute in our time and
load based model. Regarding to definition of system
load, the state space Q will be divided into two parts:
Q. as system peak load and Q... as system off-peak

|03.d, then Q:Qpeak i Qoffpeak 1 Qpeak onﬁpeak = ¢

Set R1 as the incoming speed of requests during
peak time, R2 as as the incoming speed of requests
during off-peak time. System throughput rate, as the
processed request number per unit time, can be defined
as:

E[T]1="Zjcq p()>xmin(R(i),x) @)
where x is the speed of processing request for a VM, p(i)
is the steady-state probability at system available state i,
i.e., a token is deposited in one of Pyyp, Puip, Puup2, Puip2.
R(i) is the corresponding R value at state i. If state i is
during peak time (a token deposited in Ppear), R(i) is R1,
otherwise it will be R2.

References

[1] Grottke M, Nikora A P, Trivedi K S 2010 An empirical
investigation of fault types in space mission system software DSN
2010 Conf. on Dependable Systems and Networks Chicago IL USA
June 28-July 1

Cotroneo D, Natella R, Pietrantuono R, Russo S 2010 Software
aging analysis of the linux operating system ISSRE 2010 IEEE
International Symposium on Software Reliability Engineering San
Jose CA USA Nov 1-4

Machida F, Kim D, Trivedi K S 2010 Modeling and analysis of
software rejuvenation in a server virtualized system WoSAR 2010
IEEE Second International Workshop on Software Aging and
Rejuvenation San Jose CA USA Nov 2

Kourai K, Chiba S 2007 A fast rejuvenation technique for server
consolidation with virtual machines DSN2007 Int. Conf. on
Dependable Systems and Networks Edinburgh UK June 25-28

Kim D, Machida F, Trivedi K S 2009 Availability modeling and
analysis of a virtualized system PRDC 2009 IEEE International
Symposium on Pacific Rim Dependable Computing Shanghai PRC
Nov 16-18

Thein T, Park J 2009 Availability analysis of application servers
using software rejuvenation and virtualization Journal of Computer
Science and Technology 24 (2) 339-46

[2

(3]

(4]

(5]

(6]

444

Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

Table 7 presents the average processed request
numbers for two models within one hour under different
peak durations. Obviously when the peak duration
extends, the system load gets much heavier. The same
happens to the request number of each model. When the
peak duration is less than 20 hours, our time and load
based model can get much better performance. Only
when peak duration is more than 20 hours, the time-
based model can perform better than ours. While roughly
for real system, over 20 hours peak time is very rare.

5 Conclusion

To analyze a virtualized system with Migrate-VM
rejuvenation, this paper introduces a new time and load
based rejuvenation analytical model in SRN, and then it
also presents corresponding experiments to compare our
model with existing time based model in system
availability, sensitivity and throughput. The result proves
our model works much better than time-based one for
availability and throughput, and is more stable with the
dynamic change of system load. In further research, we
will keep analyzing the aging process in real virtual
environment, adjusting parameters to make our model is
more adapted to changes in the load, and build a load
sensitive and adaptive rejuvenation framework, so as to
find the best rejuvenation policy which can maximize
system availability.

Acknowledgement

This paper is based upon work supported by the National
Natural Science Foundation of China (No. 61300053)
and the Jiangsu Provincial Natural Science Foundation of
China (No. BK2011023).

[7] Rezaei A, Sharifi M 2010 Rejuvenation high available virtualized

systems ARES 2010 International Conference on Availability,

Reliability and Security Krakow Poland Feb 15-18

Maciel Melo M P 2013 Availability study on cloud computing

environments: Live migration as a rejuvenation mechanism DSN

2013 Annual IEEE/IFIP International Conference on Dependable

Systems and Networks Budapest Hungary June 24-27

Machida F, Kim D S, Trivedi K S 2013 Modeling and analysis of

software rejuvenation in a server virtualized system with live VM

migration Performance Evaluation 70(3) 212-30

[10]Garg S, Huang Y, Kintala C 1995 Time and load based software
rejuvenation: policy, evaluation and optimality FFTS 1995
Proceedings of the First Fault-Tolerant Symposium Madras IN Dec
20-22

[11]Bao Y, Sun X, Trivedi K S 2003 Adaptive software rejuvenation:
degradation model and rejuvenation scheme DSN 2003 Int’l Conf.
On Dependable Systems and Networks San Fransisco CA USA
June 22-25

[12]Bao Y, Sun X, Trivedi K S 2005 A Workload-Based Analysis of
Software Aging, and Rejuvenation IEEE Transactions on
Reliability 54(3) 541-8

(8]

(9]

http://www.sciencedirect.com/science/article/pii/S0166531612000934
http://www.sciencedirect.com/science/journal/01665316

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445 Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

[13]Vaidyanathan K, Trivedi K S 2005 A Comprehensive model for server Virtualized System Journal of Computational Information
software Rejuvenation |EEE Transaction on Dependable and Systems 9 (23) 9611-8
Secure Computing 2(2) 124-37 [15]Ciardo G, Muppala J K, Trivedi K S 1989 SPNP: Stochastic Petri
[14]Zhong Yi, Xu Jian, Zhang Hong, Liu Fengyu 2013 Research on Net Package PNPM 1989 Proc. Int’l Workshop on Petri Nets and
Measurement-based Rejuvenation Analytical Models for a Single- Performance Models Kyoto JPN 1989 Dec 11-13

Yi Zhong , 1979.07,Nanjing, Jiangsu, P.R. China

Current position, grades: M.Sc., lecturer

University studies: received her B.Sc. in Computer Science & Technology from Nanjing University of Science and
Technology in China. She received her M.Sc. from Nanjing University of Science and Technology in China.
Scientific interest: Information security, software rejuvenation

Publications: more than 10 papers published in various journals.

Experience: teaching experience of 12 years, has completed two scientific research projects.

Jian Xu , 1979.07,Nanjing, Jiangsu, P.R. China

Current position, grades: phD, associate professor
Scientific interest: Software rejuvenation, virtualization technologies

Jing Zhong , 1988.11,Nanjing, Jiangsu, P.R. China

Current position, grades: Graduate student

University studies: School of computer science and engineering, Nanjing University of Science and Technology,
China

Scientific interest: Software rejuvenation, virtualization technologies

Fengyu Liu , 1943.07,Nanjing, Jiangsu, P.R. China

Current position, grades: professor
Scientific interest: Information security, high-confidence software

445

