

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445 Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

439

Research on rejuvenation analytical models for a virtualized
system with live VM migration

Yi Zhong*, Jian Xu, Jing Zhong, Fengyu Liu
1 School of Computer Science and Engineering Nanjing University of Science and Technology, Nanjing, Jiangsu, China, 210094

Received 6 October 2013,www,cmnt.lv

Abstract

With the widespread use of virtualization technology, availability of Virtual Machines (VMs) in server virtualized systems became

an important issue. In aspect of availability of virtualized systems, software rejuvenation is a favourable technology, which can

postpone or prevent failures caused by software aging in VMs and underlying Virtual Machine Monitor (VMM). During the

rejuvenation of the VMM, live VM migration can further improve availability of virtualized systems. In this paper, we will analysis

rejuvenation process of virtualized system with live VM migration, propose a time and load based rejuvenation analytical model in

Stochastic Reward Net (SRN) to describe state change during system rejuvenation, find the optimum combinations of rejuvenation

trigger intervals that maximize the availability of VM, and do a experience to analyze and compare the model in this paper and the

time based model. The experience result shows the time and load based rejuvenation analytical model is better than the time based
model in respect of system availability and throughput rate, and is more stable in face of the dynamic change of system load.

Keywords: Virtual Machine (VM); Virtual Machine Monitor (VMM); Software Aging; Software Rejuvenation; VM Migration; Stochastic Reward
Net (SRN)

*Corresponding author’s E-mail: zhongyi@njust.edu.cn

1 Introduction

As a common software and hardware resources sharing

framework, cloud computing gets very fast growing due

to it can provide high available and high performance

computing and storage service to both Internet and

intranet users recently. Server virtualization is the

fundamental part of cloud computing to support dynamic

volume users’ request via virtual machines (VMs)

whenever necessary. To assure the high quality service to

win users’ satisfaction on their business, how to keep

high-availability of VMs running on server virtualized

systems becomes a common concern to many

organizations, service providers and users.

After long online execution, because of age-related

bugs, which are difficult to find and remove during

developing and testing, software system may meet

memory leaking, unreleased file lock and data corruption,

until the whole system failure or crashes [1]. Software

rejuvenation is one of common used techniques to assure

high-availability of server virtualized systems by

rebooting or resetting software environment to clean

internal error state for continuing service [2, 3]. In a

virtualized system, multi-VMs are hosted on hypervisor

or virtual machine monitor (VMM) for resource

management and monitoring. When VMM fails or

suspends for aging issue, all the hosted VMs will have to

halt, so software rejuvenation is both applicable to VMM

and VMs. To minimize the down time cost, live VM

migrate are widely adopted which means live migrate a

running VM to another physical machine without client

application awareness. In this paper, we will model and

describe software rejuvenation process for server

virtualized systems with live VM migration by a

stochastic reward net (SRN) rejuvenation model, and

analyze the relationship between different composite live

VM migration actions and system performance matrix.

The rest of this paper is organized as following:

Section 2 lists existing different rejuvenation policies and

their corresponding implementation models. Section 3

introduces a time and load based analytical model for a

virtualized system with migration-VM rejuvenation
model in SRN. To validate the technique, the analysis

results on system steady-state availability, sensitivity and

system throughput rate are presented in Section 4. Finally

section 5 concludes this paper and shows the further

work.

2 Related work

VMM rejuvenation for server virtualized system was

firstly introduced in [4]. If VMM rejuvenation is directly

performed on a host, the execution environments of all

the hosted VMs are cleared because they are running on a

VMM. So based on the different approaches on hosted

VMs, VMM rejuvenation techniques can be divided into

three categories [3, 9]: Code-VM rejuvenation, Warm-

VM rejuvenation and Migrate-VM rejuvenation.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445 Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

440

 Code-VM Rejuvenation: Before triggering VMM

rejuvenation, the simplest way to handle the hosted

VMs is to just shut down all of them regardless of

their execution states. Those VMs will be restarted

in clean environment after the VMM rejuvenation.

While it forces shutdowns of the hosted VMs which

may bring potential risks. In case some VMs are still

in running state, all the transactions running on them

are lost by the Cold-VM rejuvenation. An advantage

of the Cold-VM rejuvenation, however, is that the

rejuvenation action clears all the aging states of the

VMs in addition to the aging states of the VMM.

 Warm-VM Rejuvenation: All the hosted VMs are

suspended and the corresponding execution states

are archived before VMM rejuvenation is triggered.

Then after the VMM rejuvenation, all VMs are

resumed back to origin states. Warm-VM reboot

enables a VMM to suspend hosted VM execution in

memory and resume the execution after VMM

rejuvenation [4]. Due to the execution states of VMs

are kept in memory instead of persistent storage, it

can fast the recovery VM quickly without

transactions loss risk and the overall down time are

greatly reduced.

 Migrate-VM Rejuvenation: It’s a combination

rejuvenation, which combines VMM rejuvenation

and live VM migration in a fitful way. Live VM

migration keeps services on a VM continue working

and migrates the VM among different physical

machines. Using live VM migration, a hosted VM

are moved to another before VMM rejuvenation.

Once VMM completes rejuvenation, the VM could

choose to return back to the original host or

continue stay on current one. In such rejuvenation

method, the VM can still continue the execution

even the original VMM is being rejuvenated.

However, the aging states in the hosted VMs are not

cleared by the VMM rejuvenation. Meanwhile it

only works when the migration target server has a

capacity to accept the migrated VMs.

In order to completely analyze the availability of a

server virtualized system, D. Kim et al. leveraged a

hierarchical stochastic model to present the system

architecture and the details of failure/recovery [5].

T.Thein, et al. built a continuous time-Markov chain

(CTMC) for time-based periodical rejuvenation for VMs

on a virtualized system which included two physical

servers and clustered VMs, but VMM rejuvenation is not

covered [6]. A.Rezaei, et al. added VMM failure and

VMM rejuvenation in the availability model for a

virtualized system [7]. Melo et al. introduced the

Stochastic Petri Net (SPN) model for time-based

rejuvenation in cloud computing, so as to evaluate the

impacts to system availability on different VM migration

policies [8]. Mechida.F, et al. proposed time-based

analytical models in SRN for virtualized system with

cold-VM rejuvenation and warm-VM rejuvenation

respectively, and gave the comparisons of these models

[3]. In [9], Mechida. F, et al. further considered the

effects of the failures of the target host and VM migration

process, proposed and analyzed a time-based model for

virtualized systems with migrate-VM rejuvenation with

emphasis, compared availability of the VM on the type of

live VM migration (stop-and-copy or pre-copy) and the

policy for migration back to the original host after VMM

rejuvenation (return-back or stay-on).

A time and load based analytical model was firstly

proposed by Garg S, et al.[10]. They assumed system

may have different system loading in different software

rejuvenation time window, so the down time cost and

transactions loss numbers varied a lot during

rejuvenation. Y.Bao, et al. consolidated time-based and

measure-based approaches into rejuvenation framework

with additional consideration for load and resource leak

indexes [11,12]. K.Vaidyanathan, et al. simplified his

model to be a semi-Markov load model and tried to find

out the best rejuvenation schedule with maximum

availability and minimum down time cost [13]. In our

previous work, we constructed a rejuvenation analytical

model for a single-server virtualized system with a

combinatory rejuvenation technique that uses a time-

based policy for a VMM and a measurement-based policy

for VMs [14].

3 Time and load based analytical model for a

virtualized system with Migrate-VM rejuvenation

As one extended branch of SPN, SRN makes system’s

steady-state availability can be measured by defining the

corresponding reward functions, and has quite a few

enhancements such as guard functions, transition

priorities, variable cardinality arcs, and so on, so SRN has

been wide adopted in rejuvenation modeling. We

leverages SRN models multiple services’ environment

with live VM migration, so as to assure the system still

keep service online by means of transiting the

corresponding live VMs to another available host during

VMM rejuvenation.

In this paper, for some graphical representation, we

have conventions as follows: a narrow bar for an

immediate transition, an empty rectangle for a time

transition, a filled rectangle for a deterministic transition

and # for token numbers.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445 Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

441

1
Phup

Thfp

Phfp

Thfprejt

[ghtrig]

Threjt

[ghtrig]

Phrej

Threj

[ghrej]

Thfail

Phfail

Thdet

Phdet

Threpair

1
Ph2up

Th2fp

Ph2fp

Th2fprejt

[gh2trig]

Th2rejt

[gh2trig]

Ph2rej

Th2rej

[gh2rej]

Th2fail

Ph2fail

Th2det

Ph2det

Th2repair

1

Poffpeak

Ppeak Toffpeak

Tpeak

(a) VMM1 model (b) VMM2 model (c) Peak hour model

1

Phclock

Thinterval

[ghinterval]

PhpolicyThpolicy
[ghpolicy]

Phtrigger

Threset

1

Ph2clock

Th2interval

[ghinterval]

Ph2policyTh2policy
[gh2policy]

Ph2trigger

Th2reset

[gh2reset]

1

Pvclock

Tvinterval

[gvinterval]

PvpolicyTvpolicy
[gvpolicy]

Pvtrigger

Tvreset

[gvreset]

(d) VMM1clock model (e) VMM2 clock model (f) VM clock model

1

Pvup2

Tvfp2

Pvfp2

Tvfprejt2

gvtrig

Pvrej2

Tvrejt2

[gvtrig]
Tvrej2

[gvrej2]

Tvfail2Pvfail2

Tvdet2

[gvh2up]

Pvdet2

Tvrepair2

[gvh2up]

Tvbacpre

[gvbac]

Tvmig

Tvbacrec

[gvh2up]

Tvdw2

[gvh2dw]

Trestart2
[gvh2dw]

Pvstop2

Tvfpdw2
[gvh2dw]

Tvfpmig

Tvfpbacpre

[gvbac]

Pvfpbac

Tvfpbacf

Pvbacf

Tvbacf

Pvbac Tvbac

Pvup

Tvpre [gvhrej]Pvmig

Tvmigf

Pvmigf

Tvfpmigf

Pvfpmig

Tvmigrec

[gvhup]
Tvdw

[gvhdw]

Pvstop

Tudelay

[gvhup]
Tvfpdw
[gvhdw]

Tvfppre
[gvhrej]

Tvfpbac

Tvfp

Pvfp

Tvrejt

[gvtrig]

Tvrej[gvrej]

Pvrej

Tvfprejt
[gvtrig]

Tvfail Pvfail

Tvdet

[gvhup]

Pvdet

Tvrepair

[gvhup]

Tvrejt

[gdelay]

[gdelay]

Tfdelay

Tudelay2

Tfdelay2

[gdelay]

[gdelay]

(g) VM model

FIGURE 1 Time and load based analytical model for a virtualized system with Migrate-VM rejuvenation

TABLE 1 Guard functions

Guard Definition Guard Definition

gvtrig if(#Pvtrigger==1&&# Poffpeak==1) 1 else 0 gvinterval if(#Pvup==1||#Pvfp==1||#Pvup2==1||#Pvfp2==1) 1 else 0

gdelay if(#Pvtrigger ==1&&# Ppeak==1) 1 else 0 gvpolicy if(#Pvup==1||#Pvfp==1||#Pvup2==1||#Pvfp2==1) 1 else 0

gvrej if(#Pvclock==1&&(#Phup==1||#Phfp==1)) 1 else 0 gvrej2 if(#Pvclock==1&&(#Ph2up==1||#Ph2fp==1)) 1 else 0

gvreset if(#Pvrej==1||#Pvrej2==1) 1 else 0 gvbac

Return-back: if(#Phup==1||#Phfp==1) 1 else 0

gvhrej if(#Phpolicy==1&&(#Ph2up==1||#Ph2fp==1)) 1 else 0 Stay-on: if(#Ph2policy==1&&(#Phup==1||#Phfp ==1))1 else 0

gvhup if(#Phup==1||#Phfp==1) 1 else 0 gvh2up if(#Ph2up==1||#Ph2fp==1) 1 else 0

gvhdw if(#Phfail==1) 1 else 0 gvh2dw if(#Ph2fail==1) 1 else 0

ghinterval if(#Phup==1||#Phfp==1) 1 else 0 gh2interval if(#Ph2up==1||#Ph2fp==1) 1 else 0

ghpolicy if(#Pvup==0&&#Pvfp==0&&#Pvmig==0&&#Pvfpmig==0&&
#Pvbac==0&&#Pvfpbac==0) 1 else 0

gh2policy if(#Pvup2==0&&#Pvfp2==0&&#Pvmig==0&&#Pvfpmig==0&&#Pv

bac==0&&#Pvfpbac==0) 1 else 0

ghreset if(#Phrej==1) 1 else 0 gh2reset if(#Ph2rej==1) 1 else 0

ghtrig if(#Phtrigger == 1) 1 else 0 gh2trig if(#Ph2trigger==1) 1 else 0

ghrej if(#Phclock== 1) 1 else 0 gh2rej if(#Ph2clock==1) 1 else 0

The SRN model comprises seven sub-models as

shown in Figure 1: (a) VMM1 model, (b) VMM2 model,

(c) Peak hour model, (d) VMM1 clock model, (e) VMM2

clock model, (f) VM clock model and (g) VM model.

Initially, VM is hosted on the VMM on host 1 which

called VMM1. Before VMM1 is rejuvenated, VM will be

live migrated to the VMM on host 2, i.e., VMM2. Both of

the two VMMs are rejuvenated either periodically by

each individual clock models (VMM1 and VMM2 clock

models) or when system load achieved the threshold

value (Peak model). In Figure 1 (g), the right side

describes behavior of the VM on VMM1, the left side

captures the behavior of the VM on VMM2 and the

middle is for live VM migration. The corresponding

guard functions are listed in table 1.

The process of live VM migration can be illustrated

as follows: In the beginning, the VM hosts on VMM1.

When the clock for VMM1 requests rejuvenation for

VMM1, gvhrej will enable Tvpre or Tvfppre for live VM

migration as long as VMM2 is available (which means a

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445 Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

442

token is deposited in Pvup2 or Pvfp2). It represents the live

VM migration begins. When the live VM migration is

finished, a token is deposited in Pvmig or Pvfpmig. While

the live VM migration may have certain probability of

failure for some reasons (such as network is temporary

down, or target host does not have enough capability to

host the VM, or wrong configuration for

virtualization…). If the VM migration fails, transition

Tvmigf or Tvfpmigf will be enabled, and then a token arrives at

Pvmigf. Then, a token is deposited in Pvup by firing the

transition Tvmigrec if VMM1 is available. Otherwise if a

token is deposited in Pvup2 or Pvfp2 by firing the transition

Tvmig or Tvfpmig, the VM has been successfully migrated to

VMM2 and continue servicing. When a token is

deposited in Pvup2 (VM is migrated from its up-state) or

Pvfp2(VM is migrated from its fail-probable-state) or Pvmigf

(VM migration failed), VMM1 rejuvenation starts.

According to ghpolicy definition in table 1, if a token is

deposited in Pvup, Pvfp , Pvmig, Pvfpmig, Pvbac or Pvfpbac,

VMM1 is still in use, and can not be rejuvenated.

In peak hour model, a token is deposited in Ppeak or

Poffpeak represents the VMM runs at peak load (system

load over a threshold value) or off-peak load (system load

under a threshold value). The aging speed of a VM at

peak load is faster than it at off-peak load. Tpeak and

Toffpeak are deterministic because they represent periodical

inter-transitions between peak load and off-peak load. By

the transition Tpeak, the token in Ppeak is removed and a

token is deposited in Poffpeak, while by the transition

Toffpeak, the token in Poffpeak is removed and a token is

deposited in Ppeak. When a token is deposited in Pvtrigger

(in VM clock model) and a token is deposited in Poffpeak

(in Peak hour model), one of immediate transitions Tvrejt,

Tvfprejt, Tvrejt2 and Tvfprejt2 will be fired. While if a token is

deposited in Ppeak, one of immediate transitions Tudelay,

Tfdelay, Tudelay2 and Tfdelay2 will be enabled, which means

VMM1 or VMM2 rejuvenation will start after a time.

After live VM migration and VMM rejuvenation are

successfully performed, VM may choose to stay on

current host (Stay-on policy) or return back to origin host

(Return-back policy). The only difference is whether VM

will be back to origin host. If the current host is only for

temporary usage or the VM is forced to go back to origin

host, then it has to follow return-back policy. Otherwise

either of the two policies can be used. In VM model, the

guard function gvbac for transitions Tvbacpre and Tvfpbacpre

represents both policies of VM migration. For return-

back policy, Tvbacpre or Tvfpbacpre is enabled after the

original VMM is available (VMM in up-state or fail-

probable-state). While for stay-on policy, Tvbacpre or

Tvfpbacpre is enabled until the VMM2 rejuvenation is

required. Then a token is deposited in Pvbac or Pvfpbac by

either policy. If live VM migration from VMM2 to

VMM1 fails, the VM will be restarted on VMM2. Table

1 gives the details of all guard function for migrate-VM

rejuvenation, including gvbac implementation both for

‘return-back’ and ‘stay-on’ policies.

The clock for VM rejuvenation works independent

of where the VM is hosting. When a token is deposited in

Pvtrigger in the VM clock model, one of the immediate

transitions Tvrejt , Tvfprejt , Tvrejt2, or Tvfprejt2 is enabled in VM

model. This ensures that the VM rejuvenation is

performed on the other hosting server if required when

the VM is on VMM2.

4 Experiments

TABLE 2 Default values of transitions in the model

Transition Description Default Value

Tvfp aging rate under peak hour 1/3 day-1

aging rate under offpeak hour 1/7 day-1

Tvfail VM failure rate after aging under

peak hour

1/24 h-1

VM failure rate after aging under
offpeak hour

1/3 day-1

Tvdet VM failure detection rate 12 h-1

Tvrepair VM failure recovery rate 2 h-1

Tvrej VM rejuvenation trigger rate 1 day-1

Tvrestart VM restart rate 120 h-1

Tvsd VM shutdown rate 120 h-1

Tvpre VM migration pre-copy rate 90 h-1

Tvmig VM migration rate by pre-copy 3600 h-1

Tudelay VM peakhour delay period at up
state

0.5 h-1

Tfdelay VM peakhour delay period at

failure-possible state

0.5 h-1

Thfp VMM aging rate 1/30 day-1

Thfail VMM failure rate after aging 1/7 day-1

Thdet VMM failure detection rate 12 h-1

Threpair VMM reactive recovery rate 1 h-1

Threj VMM rejuvenation rate 30 h-1

Thinterval VMM rejuvenation trigger rate 1/7 day-1

Tvhinterval VM rejuvenation trigger rate 1 day-1

Tpeak peak hour rate 1/12 h-1

Toffpeak off peak hour rate 1/12 h-1

For the SRN model in this paper, we choose SPNP to

implement its Markov regenerative process [15]. Except

deterministic transitions Thinterval, Th2interval, Tvinterval, Tpeak

and Toffpeak, all other transitions are assumed to be

exponentially distributed. All default values of transition

rate are listed in Table 2, while other default parameters

are listed Table 3.
TABLE 3 Default parameter values in the model

Cv VM migration coverage 0.9

R1 request incoming rate in peak hours 1000 s-1

R2 request incoming rate in offpeak hours 10 s-1

x request processing rate per VM 275 s-1

Given parameters listed in Table 2 and Table 3, this

section will give detail analysis and comparison on

system availability, sensitivity and throughput rate

between time-based VM rejuvenation model[9] and our

enhanced time and load balance based model.

4.1 OPTIMUM REJUVENATION TRIGGER

INTERVALS AND SYSTEM STEADY-STATE

AVAILABILITY

System steady-state availability varies for different

combination of rejuvenation trigger intervals of the VM

and the VMM. Frequent rejuvenation increases the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445 Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

443

downtime for too much cost of rejuvenation actions,

while low frequent rejuvenation may also increase the

system downtime for frequent software failures. Only at a

certain trigger interval, the steady-state availability of the

VM can be maximized. We use a gradient search

algorithm to find the exact point for optimal system

performance, so as to get the optimum combination of

rejuvenation trigger intervals of VM and VMM [9].

Table 4 presents the definition of reward functions for

steady-state availability. Using those functions along with

parameters in Table 2, we can compare the two models’

system steady-state availability. Then Table 5

summarizes the two models’ availability under default

parameter sets. Table 6 shows the optimum rejuvenation

trigger interval by the gradient search algorithm.

Consolidate data in Table 5 and Table 6, when VM

and VMM take the fitful rejuvenation interval, the two

models both can achieve their maximum availability. The

comparison of steady-state availability between stay-on

policy and return-back policy depends on parameter

setting. Under default values in this section, our model

gets higher availability.

TABLE 4 Reward functions for steady-state availability analysis

Model Definition

Time based model if((#Pvup==1)||(#Pvfp==1)||(#Pvup2==1)||(#Pvfp2==1))) 1 else 0

Time and load based model if((#Pvup==1)||(#Pvfp==1)||(#Pvup2==1)||(#Pvfp2==1))) 1 else 0

TABLE 5 System steady-state availability with default parameter values

Model Time based model Time and load based model

Stay-on Return-back Stay-on Return-back

Steady-state availability 0.996361 0.996533 0.997033 0.996535

TABLE 6 Optimum combinations of rejuvenation trigger intervals

TABLE 7 VM request processing speed under different system loads

Peak Hours per day(h) Time based model Time and load based model

stay on return back stay on return back

4 190497 190530.2 190572.8 190533

8 348908.8 348969.7 349094.6 348969.3

12 507178.3 507265.8 507518.8 507266.8

16 665300.8 665415 665843.2 665419.7

20 823269.5 823411.7 824064.3 823425

24 981073.2 981240.8 982171.6 981272.3

4.2 MIGRATION SUCCESSFUL RATE

FIGURE 2 Impacts of VM migration successful rate to steady-state

availability

Live VM migration failure may cause the down time of

systems increase. Figure 2 presents the impact of

migration successful rate to steady-state availability. As

the increasing of migration successful rate, the steady-

state availability will also be improved accordingly. Due

to return-back policy requires VM should be migrated to

origin host after VMM rejuvenation, it has much stricter

requirement. While with high migration successful rate,

the stead-state availability of return-back policy has

advantage than the stay-on policy. Based on the data in

Figure 2, comparing to time-based model, our time and

load based model achieves better in overall steady-state

availability, sensitivity of successful rate on return-back

policy.

4.3 PEAK DURATION PER DAY

Figure 3 presents the impacts of different peak duration

per day to system steady-state availability. It’s obvious

that as the peak duration extends, all the models will has

performance drop issue accordingly. The reason is longer

peak duration will fast the VM aging and increase the

probability of VM failure, as a result the system

availability will decrease. Among all the models, time

based model with stay-on policy is most sensitive to

system load, the system availability will drop sharply

when system load increasing. Since our new model

already takes system load as one of the major factor, it

can reduce the load impact to system availability as

much as possible. As showed in Figure 3, our model

does not drop so obviously comparing to original time

based model. Which means the new model can still keep

Model VM rejuvenation trigger

interval (hour)

VMM rejuvenation trigger interval

(hour)

Steady-state availability

Time based model Stay-on 20.45 30.72 0.996808

Return-back 20.95 50.36 0.996771

Time and load

based model

Stay-on 110.2 20.32 0.9977

Return-back 20.85 50.78 0.996782

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445 Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

444

high performance and availability under high system

load, even for stay-on policy.

FIGURE 3 Impacts of system load to steady-state availability

4.4 THROUGHPUT RATE

Beside availability measurement factor, the experiment

also adds system throughput rate as another performance

factor according to system load attribute in our time and

load based model. Regarding to definition of system

load, the state space  will be divided into two parts:

peak as system peak load and offpeak as system off-peak

load, then peak offpeak=     , peak offpeak    .

Set R1 as the incoming speed of requests during

peak time, R2 as as the incoming speed of requests

during off-peak time. System throughput rate, as the

processed request number per unit time, can be defined

as:

[] () min((),)E T p i R i xi   (1)

where x is the speed of processing request for a VM, p(i)

is the steady-state probability at system available state i,

i.e., a token is deposited in one of Pvup, Pvfp, Pvup2, Pvfp2.

R(i) is the corresponding R value at state i. If state i is

during peak time (a token deposited in Ppeak), R(i) is R1,

otherwise it will be R2.

Table 7 presents the average processed request

numbers for two models within one hour under different

peak durations. Obviously when the peak duration

extends, the system load gets much heavier. The same

happens to the request number of each model. When the

peak duration is less than 20 hours, our time and load

based model can get much better performance. Only

when peak duration is more than 20 hours, the time-

based model can perform better than ours. While roughly

for real system, over 20 hours peak time is very rare.

5 Conclusion

To analyze a virtualized system with Migrate-VM

rejuvenation, this paper introduces a new time and load

based rejuvenation analytical model in SRN, and then it

also presents corresponding experiments to compare our

model with existing time based model in system

availability, sensitivity and throughput. The result proves

our model works much better than time-based one for

availability and throughput, and is more stable with the

dynamic change of system load. In further research, we

will keep analyzing the aging process in real virtual

environment, adjusting parameters to make our model is

more adapted to changes in the load, and build a load

sensitive and adaptive rejuvenation framework, so as to

find the best rejuvenation policy which can maximize

system availability.

Acknowledgement

This paper is based upon work supported by the National

Natural Science Foundation of China (No. 61300053)

and the Jiangsu Provincial Natural Science Foundation of

China (No. BK2011023).

References

[1] Grottke M, Nikora A P, Trivedi K S 2010 An empirical

investigation of fault types in space mission system software DSN
2010 Conf. on Dependable Systems and Networks Chicago IL USA

June 28-July 1

[2] Cotroneo D, Natella R, Pietrantuono R, Russo S 2010 Software
aging analysis of the linux operating system ISSRE 2010 IEEE

International Symposium on Software Reliability Engineering San
Jose CA USA Nov 1-4

[3] Machida F, Kim D, Trivedi K S 2010 Modeling and analysis of

software rejuvenation in a server virtualized system WoSAR 2010
IEEE Second International Workshop on Software Aging and

Rejuvenation San Jose CA USA Nov 2
[4] Kourai K, Chiba S 2007 A fast rejuvenation technique for server

consolidation with virtual machines DSN2007 Int. Conf. on

Dependable Systems and Networks Edinburgh UK June 25-28
[5] Kim D, Machida F, Trivedi K S 2009 Availability modeling and

analysis of a virtualized system PRDC 2009 IEEE International
Symposium on Pacific Rim Dependable Computing Shanghai PRC

Nov 16-18

[6] Thein T, Park J 2009 Availability analysis of application servers
using software rejuvenation and virtualization Journal of Computer

Science and Technology 24 (2) 339-46

[7] Rezaei A, Sharifi M 2010 Rejuvenation high available virtualized

systems ARES 2010 International Conference on Availability,
Reliability and Security Krakow Poland Feb 15-18

[8] Maciel Melo M P 2013 Availability study on cloud computing

environments: Live migration as a rejuvenation mechanism DSN
2013 Annual IEEE/IFIP International Conference on Dependable

Systems and Networks Budapest Hungary June 24-27
[9] Machida F, Kim D S, Trivedi K S 2013 Modeling and analysis of

software rejuvenation in a server virtualized system with live VM

migration Performance Evaluation 70(3) 212-30
[10] Garg S, Huang Y, Kintala C 1995 Time and load based software

rejuvenation: policy, evaluation and optimality FFTS 1995
Proceedings of the First Fault-Tolerant Symposium Madras IN Dec

20-22

[11] Bao Y, Sun X, Trivedi K S 2003 Adaptive software rejuvenation:
degradation model and rejuvenation scheme DSN 2003 Int’l Conf.

On Dependable Systems and Networks San Fransisco CA USA
June 22-25

[12] Bao Y, Sun X, Trivedi K S 2005 A Workload-Based Analysis of

Software Aging, and Rejuvenation IEEE Transactions on
Reliability 54(3) 541-8

http://www.sciencedirect.com/science/article/pii/S0166531612000934
http://www.sciencedirect.com/science/journal/01665316

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 439-445 Zhong Yi, Xu Jian, Zhong Jing, Liu Fengyu

445

[13] Vaidyanathan K, Trivedi K S 2005 A Comprehensive model for
software Rejuvenation IEEE Transaction on Dependable and

Secure Computing 2(2) 124-37
[14] Zhong Yi, Xu Jian, Zhang Hong, Liu Fengyu 2013 Research on

Measurement-based Rejuvenation Analytical Models for a Single-

server Virtualized System Journal of Computational Information
Systems 9 (23) 9611-8

[15] Ciardo G, Muppala J K, Trivedi K S 1989 SPNP: Stochastic Petri
Net Package PNPM 1989 Proc. Int’l Workshop on Petri Nets and

Performance Models Kyoto JPN 1989 Dec 11-13

Authors

 Yi Zhong , 1979.07,Nanjing, Jiangsu, P.R. China

Current position, grades: M.Sc., lecturer
University studies: received her B.Sc. in Computer Science & Technology from Nanjing University of Science and
Technology in China. She received her M.Sc. from Nanjing University of Science and Technology in China.
Scientific interest: Information security, software rejuvenation
Publications: more than 10 papers published in various journals.
Experience: teaching experience of 12 years, has completed two scientific research projects.

Jian Xu , 1979.07,Nanjing, Jiangsu, P.R. China

Current position, grades: phD, associate professor
Scientific interest: Software rejuvenation, virtualization technologies

Jing Zhong , 1988.11,Nanjing, Jiangsu, P.R. China

Current position, grades: Graduate student
University studies: School of computer science and engineering, Nanjing University of Science and Technology,
China
Scientific interest: Software rejuvenation, virtualization technologies

Fengyu Liu , 1943.07,Nanjing, Jiangsu, P.R. China

Current position, grades: professor
Scientific interest: Information security, high-confidence software

